FRAGMENTATION OF RADICALS DERIVED FROM GLYCOLALDEHYDE AND GLYCERALDEHYDE IN AQUEOUS SOLUTION. AN EPR STUDY.

S. Steenken and D. Schulte-Frohlinde

Max-Planck-Institut fir Kohlenforschung, Abt. Strahlenchemie D-433 Mulheim, Stiftstr. 34-36, Germany

(Received in UK 6 December 1972; received in UK for publication 17 January 197))

When a neutral aqueous solution of acetone and ethylene glycol is irradiated with UVlight within the cavity of an epr-spectrometer the radicals $\underline{1}$ and $\underline{2}$ are the only paramagnetic species to be observed¹:

$$
(CH3)2 CO* + HOCH2 CH2 OH \longrightarrow (CH₃)₂ COH + HOCH₂ CHOH (1)
$$

In strongly acidic solution, however, 2 eliminates a molecule of water to yield the formylmethyl radical 3 which can be identified by epr-spectroscopy^{1,2}:

$$
\text{HOCH}_2 \cdot \text{CHOH} \xrightarrow{H^+} H_2 \cdot \text{CHO} + H_2 O \qquad (2)
$$

According to pulse radiolysis studies, this elimination is also catalyzed by OH^{-3,4}.

We now wish to report results obtained by irradiating 0.08 **M** aqueous solutions of glycolaldehyde and glyceraldehyde, respectively, containing 0.8 M acetone at room temperature. If electronically excited acetone abstracts an H-atom from glycolaldehyde. which is hydrated to about 85% in aqueous solution⁵, the radicals (HO)₂CCH₂OH, $\frac{1}{2}$; HC(OH)₂ CHOH, $_2$; HOCH₂ CO, $_5$, and 1 are expected to be formed. With the exception of 1, however, these radicals could not be detected between pH o and 12. Instead, the carboxymethyl radical χ (a_a=21.2 Gauss) and the hydroxymethyl radical $\underline{8}$ (a_a=17.7, a_{OH}=1.0 Gauss) were identified. In addition, carbon monoxide was found to be present in irradiated solutions. We suggest that γ is produced from $\frac{1}{2}$ by a 1.2-elimination of H_2 O analogous to (2):

H? PH l C-CH + 1. -CH, + &O (3) HO H bH 4 2

Apparently, this reaction is much faster than (2) even at neutral pH-values. As a consequence the stationary concentration of 4 stays below the detection limit. We suggest the heat of formation of the carboxyl group to be the driving force of reaction (3).

Since neither 5 nor radicals derived from its decomposition could be observed its formation must be of minor importance. This conclusion is in agreement with the results of Hudson⁶ who found that H-atoms are more easily abstracted from acetal C-atoms than from ether C-atoms. 8 and CO are the products of a C-C fragmentation reaction. They are probably produced from the common precursor 6:

$$
\cdot C = CH_2 \text{ OH} \longrightarrow CO + CH_2 \text{ OH} \tag{4}
$$

In contrast to CH, \rm{CO} , $\rm{6}$ apparently decarbonylates with high yield. This may be related to the fact that $\underline{8}$ is a more stable radical than \overline{c}_{H_2} , Alternatively, the transition state for the fragmentation of 6 may be lowered by an interaction between the OH and CO groups. In principle, 6 can also be formed from 4 by a l.l-elimination of water:

$$
\begin{array}{ccc}\nHQ & O \\
\cdot C \sim CH_2 \text{OH} & \xrightarrow{\text{O}} C \cdot CH_2 \text{OH} + H_2 O \\
HO & \xrightarrow{\text{L}} & \xrightarrow{\text{G}} & \xrightarrow{\text{O}} & (5)\n\end{array}
$$

The question as to what extent this reaction contributes to the production of 6 is presently under investigation.

The relative concentrations of γ and $\underline{\delta}$ depend on the pH and on the temperature of the $\verb|solution. Below pH 1 and above pH 1o the formation of 7 is favored with respect to that$ of $\underline{8}$. $\underline{8}$ seems to profit more than $\underline{7}$ from a temperature increase. This is in agreement with the well-known temperature dependence of decarbonylation reactions^{8,9}.

If glycolaldehyde is substituted by glyceraldehyde under the conditions described, the radical HOCH₂ CHCO₂ H (a_a=20.5, a_n=28.o, a_{OH}=0.25 Gauss)¹⁰, which results from $(HO)_2$ CCH(OH)CH₂OH by a 1.2-elimination of water analogous to (3), and the radical HOCHCH₂ OH ($a_{\alpha}=18.2$, $a_{\beta}=9.1$, $a_{\text{OH}}=1.2$, $a_{\text{OH}}=0.2$ Gauss), which is the product of a C-C fragmentation reaction analogous to (4) , can be identified. As with glycolaldehyde, carbon monoxide is found as a reaction product.

If H-atoms are abstracted from glycolaldehyde or glyceraldehyde by OH-radicals generated by gamma-irradiation of aqueous solutions, CO can also be detected. This result excludes a decarbonylation mechanism by which CO is exclusively formed by direct fragmentation of the electronically excited carbonyl compounds as was observed for dibenzylketone by Quinkert 11 .

REFERENCES

11 G.Quinkert, K.Opitz, W.W.Wiersdorff and J.Weinlich, Tetrahedron Lett. 1963, 1863